6,188 research outputs found

    Giotto Extended Mission (GEM)

    Get PDF
    The primary objectives of the Giotto Extended Mission (GEM), are to determine the composition and physical state of the Grigg Skjellerup Comet's nucleus; to determine the processes that govern the composition and distribution of neutral and ionized species in the cometary atmosphere. Giotto consists of a single European Space Agency (ESA) spacecraft that was launched in 1985 from Center Spatial Guyanis in French Guiana on an Ariane launch vehicle. After a successful launch into geostationary orbit and a heliocentric transfer trajectory, the spacecraft successfully encountered Halley's Comet in 1986. One month after encountering Halley's Comet, Mar. 1986, the spacecraft was placed in hibernation in a heliocentric orbit slightly less than 1 AU. Between Feb. and Jul. 1990 the spacecraft was successfully reactivated, checked out, and placed on a trajectory course to intercept comet Grigg Skjellerup. The spacecraft has been in hibernation since Jul. 1990. Information is presented in tabular form in the following areas: coverage goals, Deep Space Network Support, frequency assignments, telemetry, command, and tracking support responsibility

    X-ray reverberation around accreting black holes

    Full text link
    Luminous accreting stellar mass and supermassive black holes produce power-law continuum X-ray emission from a compact central corona. Reverberation time lags occur due to light travel time-delays between changes in the direct coronal emission and corresponding variations in its reflection from the accretion flow. Reverberation is detectable using light curves made in different X-ray energy bands, since the direct and reflected components have different spectral shapes. Larger, lower frequency, lags are also seen and are identified with propagation of fluctuations through the accretion flow and associated corona. We review the evidence for X-ray reverberation in active galactic nuclei and black hole X-ray binaries, showing how it can be best measured and how it may be modelled. The timescales and energy-dependence of the high frequency reverberation lags show that much of the signal is originating from very close to the black hole in some objects, within a few gravitational radii of the event horizon. We consider how these signals can be studied in the future to carry out X-ray reverberation mapping of the regions closest to black holes.Comment: 72 pages, 32 figures. Accepted for publication in The Astronomy and Astrophysics Review. Corrected for mostly minor typos, but in particular errors are corrected in the denominators of the covariance and rms spectrum error equations (Eqn. 14 and 15

    Processing of combined domestic bath and laundry waste waters for reuse as commode flushing water

    Get PDF
    An experimental investigation of processes and system configurations for reclaiming combined bath and laundry waste waters for reuse as commode flush water was conducted. A 90-min recycle flow was effective in removing particulates and in improving other physical characteristics to the extent that the filtered water was subjectively acceptable for reuse. The addition of a charcoal filter resulted in noticeable improvements in color, turbidity, and suds elimination. Heating and chlorination of the waste waters were investigated for reducing total organism counts and eliminating coliform organisms. A temperature of 335.9 K (145 F) for 30 min and chlorine concentrations of 20 mg/l in the collection tank followed by 10 mg/l in the storage tank were determined to be adequate for this purpose. Water volume relationships and energy-use rates for the waste water reuse systems are also discussed

    The chemical/physical and microbiological characteristics of typical bath and laundry waste waters

    Get PDF
    Chemical/physical and microbiological characteristics are studied of typical bath and laundry waters collected during a 12 day test in which the untreated waste waters were reused for toilet flush. Most significant changes were found for ammonia, color, methylene blue active substances, phosphates, sodium, sulfates, total organic carbon, total solids, and turbidity in comparison with tap water baseline. The mean total number of microorganisms detected in the waste waters ranged from 1 million to 10 to the 7th power cells/m1 and the mean number of possible coliforms ranged from 10 to the 5th power to 1 million. An accumulation of particulates and an objectible odor were detected in the tankage used during the 12 day reuse of the untreated waste waters. The combined bath and laundry waste waters from a family of four provided 91 percent of the toilet flush water for the same family

    Caught in the act: Measuring the changes in the corona that cause the extreme variability of 1H 0707-495

    Get PDF
    The X-ray spectra of the narrow line Seyfert 1 galaxy, 1H 0707-495, obtained with XMM-Newton, from time periods of varying X-ray luminosity are analysed in the context of understanding the changes to the X-ray emitting corona that lead to the extreme variability seen in the X-ray emission from active galactic nuclei (AGN). The emissivity profile of the accretion disc, illuminated by the X-ray emitting corona, along with previous measurements of reverberation time lags are used to infer the spatial extent of the X-ray source. By fitting a twice-broken power law emissivity profile to the relativistically-broadened iron K fluorescence line, it is inferred that the X-ray emitting corona expands radially, over the plane of the accretion disc, by 25 to 30 per cent as the luminosity increases, contracting again as the luminosity decreases, while increases in the measured reverberation lag as the luminosity increases would require also variation in the vertical extent of the source above the disc. The spectrum of the X-ray continuum is found to soften as the total X-ray luminosity increases and we explore the variation in reflected flux as a function of directly-observed continuum flux. These three observations combined with simple, first-principles models constructed from ray tracing simulations of extended coron self-consistently portray an expanding corona whose average energy density decreases, but with a greater number of scattering particles as the luminosity of this extreme object increases.Comment: 12 pages, 4 figures. Accepted for publication in MNRA

    Discovery of high-frequency iron K lags in Ark 564 and Mrk 335

    Get PDF
    We use archival XMM-Newton observations of Ark 564 and Mrk 335 to calculate the frequency dependent time-lags for these two well-studied sources. We discover high-frequency Fe K lags in both sources, indicating that the red wing of the line precedes the rest frame energy by roughly 100 s and 150 s for Ark 564 and Mrk 335, respectively. Including these two new sources, Fe K reverberation lags have been observed in seven Seyfert galaxies. We examine the low-frequency lag-energy spectrum, which is smooth, and shows no feature of reverberation, as would be expected if the low-frequency lags were produced by distant reflection off circumnuclear material. The clear differences in the low and high frequency lag-energy spectra indicate that the lags are produced by two distinct physical processes. Finally, we find that the amplitude of the Fe K lag scales with black hole mass for these seven sources, consistent with a relativistic reflection model where the lag is the light travel delay associated with reflection of continuum photons off the inner disc.Comment: 10 pages, 12 figures, accepted for publication in MNRA

    Background questions for the "enter"/"exit" research

    Get PDF
    How do languages encode different kinds of movement, and what features do people pay attention to when describing motion events? This document outlines topics concerning the investigation of “enter” and “exit” events. It helps contextualise research tasks that examine this domain (see 'Motion Elicitation' and 'Enter/Exit animation') and gives some pointers about what other questions can be explored

    The Closest Look at 1H0707-495: X-ray Reverberation Lags with 1.3 Ms of Data

    Get PDF
    Reverberation lags in AGN were first discovered in the NLS1 galaxy, 1H0707-495. We present a follow-up analysis using 1.3 Ms of data, which allows for the closest ever look at the reverberation signature of this remarkable source. We confirm previous findings of a hard lag of ~100 seconds at frequencies v ~ [0.5 - 4] e-4 Hz, and a soft lag of ~30 seconds at higher frequencies, v ~ [0.6 - 3] e-3 Hz. These two frequency domains clearly show different energy dependences in their lag spectra. We also find evidence for a signature from the broad Fe K line in the high frequency lag spectrum. We use Monte Carlo simulations to show how the lag and coherence measurements respond to the addition of Poisson noise and to dilution by other components. With our better understanding of these effects on the lag, we show that the lag-energy spectra can be modelled with a scenario in which low frequency hard lags are produced by a compact corona responding to accretion rate fluctuations propagating through an optically thick accretion disc, and the high frequency soft lags are produced by short light-travel delay associated with reflection of coronal power-law photons off the disc.Comment: 11 pages, 10 figures. Accepted for publication in MNRA

    Life inside black holes

    Full text link
    We consider test planet and photon orbits of the third kind inside a black hole, which are stable, periodic and neither come out of the black hole nor terminate at the singularity. Interiors of supermassive black holes may be inhabited by advanced civilizations living on planets with the third-kind orbits. In principle, one can get information from the interiors of black holes by observing their white hole counterparts.Comment: 4 pages, 2 figure

    Revealing structure and evolution within the corona of the Seyfert galaxy I Zw 1

    Get PDF
    X-ray spectral timing analysis is presented of XMM-Newton observations of the narrow line Seyfert 1 galaxy I Zwicky 1 (I Zw 1) taken in 2015 January. After exploring the effect of background flaring on timing analyses, X-ray time lags between the reflection-dominated 0.3-1.0keV energy and continuum-dominated 1.0-4.0keV band are measured, indicative of reverberation off the inner accretion disc. The reverberation lag time is seen to vary as a step function in frequency; across lower frequency components of the variability, 3e-4 to 1.2e-3Hz a lag of 160s is measured, but the lag shortens to (59 +/- 4)s above 1.2e-3Hz. The lag-energy spectrum reveals differing profiles between these ranges with a change in the dip showing the earliest arriving photons. The low frequency signal indicates reverberation of X-rays emitted from a corona extended at low height over the disc while at high frequencies, variability is generated in a collimated core of the corona through which luminosity fluctuations propagate upwards. Principal component analysis of the variability supports this interpretation, showing uncorrelated variation in the spectral slope of two power law continuum components. The distinct evolution of the two components of the corona is seen as a flare passes inwards from the extended to the collimated portion. An increase in variability in the extended corona was found preceding the initial increase in X-ray flux. Variability from the extended corona was seen to die away as the flare passed into the collimated core leading to a second sharper increase in the X-ray count rate.Comment: 18 pages, 11 figures. Accepted for publication in MNRA
    corecore